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1 Introduction 

The aim of this project is to implement a program that will create and display a never ending 
landscape of mountains and hills. In this report, a series of methods and algorithms will be 
presented. The purpose of combining these methods is to process and display a fractal 
generated landscape to the user through 3D rendering. 
This document is a review of the entire project, including specification, research, prototypes, 
design, implementation and a final review. The report is aimed at computer science literates 
with knowledge of programming and applicable mathematics. Specific research topics will be 
explained later on in order to elucidate the reader. 

1.1 Initial Brief 
The project title and description, as provided unchanged from the original is: 
 
Real-time Fractal Landscape Flyover 

Specification:  
The aim is to create a simple simulation of an aircraft flying over a complex fractal 
visualization of landscapes. The movement of the plane will be very simple. The creation 

and visualization of the landscape will be produced using a fractal algorithm. 

Issues to consider:  
1. Creation and storage of the geometrical data of the fractal landscape.  
2. Rendering the fractal landscape in real-time.  

3. Effect of rules on the creation of the landscape.  

1.2 Context  
This is a 3D rendering application, and is not being designed for any user in particular, 
neither is it being developed in a team. It will use certain methods and algorithms which have 
been developed by other people, and these will be appraised later on in this document. 

1.3 Aim and Objectives 
In order to fully understand what is meant to be created at the end of this project, the title will 
be examined in detail and determine what each word means. 
 
Real-time – the application must render the finished solution at over 25FPS (Frames Per 

Second) average on the target system. 
 

Fractal – the terrain must be generated by some form of fractal iterative or recursive 

algorithm. The input and output can be non-fractal, as long as the core generation functions 
are. This means mountain positions can be input into the algorithm, then use a fractal 
algorithm to create the base geometry, and then use some sort of post process filter to make 
the terrain more believable. 
 

Landscape – This at bare minimum means some form of terrain, but ideally the terrain 

should be big enough to scroll across the screen and make it feel as though the user is 
travelling across the terrain instead of just viewing an area of terrain. 
 

Flyover – The application will allow control of a plane flying over the terrain with which to 

view the terrain in an intuitive way. 
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The core aims of the project are: 

 Render a 3D terrain 
o Must be realtime (above 25FPS) 
o Must scroll as to appear larger than what is currently onscreen 
o Base generation of terrain must incorporate a fractal algorithm 
o Must be textured, ideally with some form of shader 

 Control a plane flying over the landscapes 
 

The secondary aims of the project are: 

 Additional Terrain Detail 
o Include Trees on the terrain 
o Include Lakes and/or Rivers on the terrain 

 Make the landscape scroll infinitely (if possible) 

 Have the application scale graphics settings based on hardware available 
 
This project will be considered ‘complete’ if the core aims are achieved, but ideally the 
secondary aims should be completed as well, but these can be cut out if time restraints 
become too tight. 
  



Real Time Fractal Landscape Flyover  

- 6 - 

2 Project Background 

The application is a 3D visualization simulation of a landscape, and there are several 
elements that are to be considered when programming this solution. 
 

2.1 Problem Context and Ethics 

2.1.1 Problem Context 

This project concerns itself with rendering mountains and hills using fractal algorithms. The 
fractal algorithms will be presented later on in the document. The other aspect that is non-
computer science related is the nature of mountains. Some reference pictures will be used to 
model features of the landscape on. 

 
Figure 2-1 (Foxon C, 2010) 

This scene shows a snow topped mountain; note the jagged ridgeline at the top, and sheer 
faces. Snow is interspersed with rock, as opposed to being a flat covering. 

 
Figure 2-2 (Foxon C, 2010) 

Lower hilly areas are smoother, and often covered with trees, the overall shape of the hills 
are similar to mountains, but less jagged, and less steep. 
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These features will be taken into account when designing procedures to generate the 
landscapes. 
 

2.1.2 Ethics 

This project is a 3D rendering work, and does not include any third parties in collection of 
information. All resources used in creation of the report documents and application are 
referenced to their original creators, and any source code not created by the author of this 
document is labelled in the code itself. Any textures used are either purposefully created for 
this project, or from credited royalty free sources. 

2.2 Comparison of Technologies 

2.2.1 Rendering Technology 

Mentioned previously in the document, it was said that DirectX would be used for the 
rendering portion of this coursework. The comparable technology that could be used as an 
alternative is OpenGL. The following is a comparison and justification of technology. 
 
DirectX is a closed source API which is developed by Microsoft. It is usually the first to 
implement new technologies, because Microsoft works closely with hardware manufacturers. 
This makes DirectX the de facto standard for a large number of development studios, 
particularly any which do work on Xbox 360 (which uses a variation on DirectX 9.0). One of 
the big benefits to DirectX is that it provides easy interfaces to complex technologies, such 
as .fx files to describe combined vertex and pixel shaders. 
 
OpenGL is an open source API which has a featureset managed by Khronos Group. The 
main benefit to OpenGL is that it is platform independent, so can run on Windows, Mac and 
Linux, as well as flavours on other platforms. It tends to be a little behind DirectX on new 
features, and cannot be used on Xbox platforms. There is a large amount of tutorial 
information on the internet for OpenGL, but a lot of it isn’t relevant due to the new shader 
pipeline technology. There is more easily accessible documentation on DirectX through 
MSDN, but is less intelligible than many tutorial websites for DirectX. 
 
The DirectX SDK will be used because it is simpler to use shaders with, and is a technology 
which is very widely used in the games industry, so familiarity with it is beneficial. 
 

2.2.2 Programming Language 

The two core languages with which the author feels comfortable programming in are C++ 
and C#. 
 
C++ is an earlier language than C#, which is closer to the assembly code, which means 
faster performance than C#. This is paid for in code complexity and harder to debug code. 
However, the author has been programming in C++ for a few years more than C#. 
 
C# is a more modern language that is conceptually easier to code in than C++. The 
disadvantage to this is that C# code usually runs slower than C++ code, particularly for CPU 
bound applications such as matrix multiplication (Sestoft, 2010). The XNA framework would 
allow code to run on PC and Xbox 360, but that isn’t a requirement of the initial brief. 
 
C++ is the language that will be used in this project because of the author’s familiarity with 
the language, and its speed advantage in a performance critical project. 
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2.3 Alternate Solutions 

2.3.1 Alternatives to Fractal Terrain Generation 

Although the nature of this project is Fractal Terrain Generation, there are alternate methods 
that can be used to generate terrain heightmaps. A couple of them are discussed below 
 

2.3.1.1 Fault Formation 
This algorithm generates a heightmap by repeatedly dividing the map in half, along a 
random line, and then altering the height differently on either side of this line. The first 
iteration would give two flat surfaces of different heights. By repeating this again and again, 
after several iterations, a noisy terrain heightmap starts to appear. 

 
Figure 2-3 Fault Formation Algorithm iterations (Shankel J, 2000) 

 
In order to end up with a reasonably realistic terrain, the amount each line offsets by is 
reduced with every iteration, so the first few iterations define the overall shape, and the later 
iterations add detail. After fault formation is complete, the map is often blurred to give a 
smoother, more realistic finish to the map. This algorithm is quite simple to implement, but 
isn’t very versatile. It’s difficult to control the output, and also needs lots of iterations plus 
blurring to make the final landscape acceptable. 
 

2.3.1.2 Particle Deposition 
Another alternative is particle deposition, which is a process by which a particle is deposited 
on the terrain, and falls to the lowest point of the terrain. Another particle is then dropped, 
and if it lands on top of another particle, it randomly goes in one of 4 directions, and keeps 
falling until it settles in a flat area. 

 
Figure 2-4 Particle Deposition 

As in the diagram above, the dotted particle hits another particle and moves to the left, as it’s 
lower. The next particle hits the same place, and moves to the right this time, as the left is 
already flat. The next particle would just sit in place, as the left and right are both flat. 
This algorithm is conceptually quite simple, but it often results in homogenous, almost 
spherical terrain, which doesn’t look realistic. 
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2.3.1.3 Brownian Motion 
Brownian motion (or Brownian Noise) is a function, which can be described using 
trigonometry which, with certain parameters, can be used to simulate the outline of terrain. 
The function can be defined as such: 

 
Equation 1 Brownian motion equation 

This results in the following, when given different parameters for H: 

 
Figure 2-5 Different parameter representations of Brownian Noise (Desussen O and Lintermann B, 2005) 

 
For values above 0.5, this function seems to appropriately reproduce the sort of contours 
associated with terrain. 
This algorithm is good because it approximates terrain well, and can be evaluated at any 
point, so continuity is preserved. This would make it easy to have seamlessly connecting 
blocks. The problem with this algorithm is that it is somewhat complex to implement properly, 
and using a library function would negate credit. (Desussen O and Lintermann B, 2005) 
 

2.3.1.4 Midpoint Displacement and Diamond Square 
These algorithms need the 4 corners of a heightmap as input, and then recursively iterate 
over smaller and smaller squares of the map, randomizing values by a decreasing range of 
offsets.  

 

 
Figure 2-6 Diagram of midpoint displacement (Shankel J, 2000) 
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This method is good because it is very quick to execute, simple to understand, and the 
algorithm can be seeded by presetting heights in the map. The disadvantage is that the 
terrain generated can sometimes have square creases in it, damaging the realism effect. 
This is the algorithm that shall be used in the project, because it is fast enough to be done in 
realtime, and can be controlled, which means feature points can be set, and control where 
mountains/lakes appear. 

2.3.1.5 Voronoi Diagrams 
Voronoi diagrams are a method of dividing up a space by creating ‘cells’ around sets of 
points in that space. For example, in a 2D Voronoi Diagram, the space can be thought of as 
an image, with a series of random dots placed on its surface. Then, by creating bisection 
lines between each of those points, a diagram is formed where all pixels which are nearest 
to a particular dot are part of the same cell. An example diagram is below. 

 
Figure 2-7 Example Voronoi Diagram (Burkardt J, 2001) 

 
This diagram has divided up the image into separate cells, but this doesn’t represent a 
heightmap yet. If an algorithm takes each of these cells and fills a centralised gradient in 
each, then every cell becomes a mountain. This approach was suggested in Realtime 
Procedural Terrain Generation (Olsen J, 2004), from which the below diagram is taken.  
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Figure 2-8 Voronoi heightmap (Olsen J, 2004) 

Another improvement suggested in (Olsen J, 2004) is multiplying the max height of each by 
a random value, allowing mountains of different heights, with particularly low values 
becoming flat plains to allow gameplay on. 

 
Figure 2-9 Scaled Voronoi heightmap (Olsen J, 2004) 

2.4 Comparison of Algorithms 

2.4.1 Creation of landscape geometry 

As described in the project description, the creation of the geometry should involve a fractal 
algorithm. A fractal algorithm is a recursive or iterative function which repeats the same set 
of commands over a data set to get a pattern which is self similar. In that the overall pattern 
is mathematically similar to a subset of that pattern. 
There are a number of different fractal algorithms which have been used to generate terrain 
geometry, some of which will be discussed below. 
One of the most popular algorithms for fractal generation of a heightmap are the 
'displacement algorithms'. These work by iteratively displacing the nodes in a heightmap by 
a decreasing amount, with the early iterations defining the overall shape of the mountain and 
the later iterations adding detail. 
Research done so far has discovered two ways of doing this, Midpoint displacement, or 
diamond-square. Both algorithms start off with an array of points, and then the values for the 
4 corner values are set as seed values. 
 
Midpoint displacement takes these corner values, and makes 4 midpoints based on the 
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averages of the corners. After finding this average, the height is offset by a random number, 
creating a contour in the heightmap. This process is repeated, each iteration taking the 
previous square of 4 corners, and splitting it into 4 smaller squares, and performing the 
algorithm again. Each iteration reduces the range of random numbers that the point can be 
displaced by, making the initial points describe the overall shape, and the later generated 
points fill in the details. 
The main problem with this algorithm is that it tends to make creases in a square shape due 
to the way the algorithm breaks down the array into squares. 
 
Diamond square algorithm is an alternative to Midpoint displacement that is very similar, but 
slightly refined. There are two steps of iteration here. The first step is the 'diamond step' 
where the 4 corners of the square are averaged together to find 1 centre value, which is then 
randomly offset. Then the 'square step' is performed, where the 4 side points are calculated 
from the new centre point and the existing corner points. This proves to make more 
appealing terrain than Midpoint Displacement because the extra step calculates the new 
value on a diagonal, making the crease effect less noticeable. The disadvantage with this 
algorithm is that you sometimes get 'spikes' where the centre value is offset by a large 
amount and the terrain looks unrealistic. This should be avoidable by careful parameter 
selection, but research will continue during development for further refinements of this 
algorithm. 
(Martz P, 1997) 
 
Both algorithms will produce a heightmap following a similar pattern to this: 

Pass 1 

Pass 2 

Pass 5 
Figure 2-10 Midpoint displacement over several passes (Martz P, 1997)  

The final pass 5 still has the same overall shape of pass one (note the leftmost corner is still 
high up), but the further passes of the algorithm have added detail to the mesh. 
Diamond Square will be used instead of simple Midpoint Displacement, as it eases some of 
the square crease artefacts. 
 

2.4.2 Terrain Rendering 

Once the heightmap is generated, it needs to be rendered to the screen. The simplest way 
of doing this is do take every point on the heightmap, assign quads to link it to the other 
points around it, and send it all to the GPU. This is very expensive because a lot of polygons 
are used, and there are a lot of parts of a scene that don't need full detail (for example, 
behind the camera, where no terrain will be on screen). In order to make rendering fast, an 
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algorithm to simplify the mesh must be used, along with culling algorithms to cut down on 
superfluous triangles. 
 

2.4.2.1 ROAM 
Realtime Optimally Adaptive Meshes is an algorithm developed in the 1990's as a combined 
CPU and GPU method for rendering terrain. The principle used is that the CPU scans over 
the heightmap, adding detail where it's needed (on bumpy contours) and adding only small 
amounts of detail where it isn't (on flat plains). This results in an optimal mesh which the 
GPU can draw, making the GPU render less triangles makes it render faster. The problem 
with this algorithm is that because it was developed a long time ago, it's not particularly 
efficient for today's modern GPUs. The reason for this is that every single frame, the mesh, 
or parts of it, need to be sent to the GPU again. Today's GPUs are much faster if they're 
rendering something in video memory, and updating that video memory every frame can be 
quite slow. 
(Duchineau M et al 1997) 
 

 
Figure 2-11 Rendering of the variable detail tessellation ROAM provides (Duchineau M et al 1997) 

 

2.4.2.2 Geometry Clipmaps 
Geometry Clipmaps are a GPU-heavy solution which uses grids of different levels of detail 
which move with the camera over the terrain. As a piece of the terrain gets nearer, it 
becomes more detailed as it moves into the closer toroid grids. It uses modern GPUs 
efficiently, and also supports terrain compression and automatic geomorphing (so there's no 
level of detail pop in). 

 
Figure 2-12 Visualization of concentric toroids showing the decreasing terrain complexity as distance 

from camera increases (Asirvatham A and Hoppe H, 2005) 

 
The main problem with this algorithm is implementation complexity. It requires a lot of shader 
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code that may take the author a long time to understand. (Asirvatham and Hoppe, 2005) 

 

2.4.2.3 Geo Mip Mapping 
This algorithm is quite simple for implementation, and consists of breaking down the  terrain 
to be drawn into patches (say, 64x64 points) and calculating different levels of detail for each 
patch (say 32x32 and 16x16 detail). When the patch is far away from the camera, a low 
detail patch is displayed, and when neared, a high detail patch is swapped in. This is a 
simple algorithm to implement, but has a couple of caveats. One is lining up different 
patches to prevent gaps or T-junctions. The other is 'pop in'. Pop in is when a patch is 
swapped to a different detail instantaneously, and the player sees the extra polygons jump 
into view. (de Boer W, 2000) 
 
In this project, Geo Mip Mapping will be used, due to its simplicity and that it should work 
well with a system of block-based terrain generation. Geo Clip Maps are too difficult to 
implement fully on this time scale, and the performance gains are unknown. 
 

2.4.3 Tree/Foliage Rendering 

 

2.4.3.1 Rendering Grass as Textured Grass Clusters 
This is a method by which grass objects are constructed with a semi transparent texture, 
showing several blades of grass is used. Each of these objects consists of only a few faces, 
meaning that there are very few polygons to render per object. This means that lots of them 
can fit in the scene. 

 
Figure 2-13 An example of a grass texture that allows multiple blades of grass per face (Pelzer K, 2004) 

 

 
Figure 2-14 Grass Objects as in (Pelzer K, 2004) 
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Using vertex shaders, the grass objects can be animated separately using basic 
trigonometry functions. If each object knows the central point of the object, then the top 
vertexes can be moved in unison, so as not to distort the texture. (Pelzer K, 2004) 
 
 

2.4.3.2 Geometry Instancing 
In order to cover a terrain in tree objects, a lot of them need to be drawn, in the order of 
hundreds on screen at the same time. If each of these were to take up an individual draw 
call, then the CPU would grind to a halt. In order to render large numbers of identical objects 
quickly, instancing can be used. A packet of objects is assembled, and that whole set of 
objects is rendered at once with one draw call. 

 
Figure 2-15 Instancing used in Black and White 2, referenced in GPU Gems 2 (Carucci F, 2005) 

 
As seen above, instancing allows hundreds of identical objects to be rendered quickly. The 
above image shows people, however using trees or cacti models instead would lead to a 
convincing looking forest or foliage group. (Carucci F, 2005) (Gosselin D et al, 2005) 
 
Geometry Instancing will be the first technology used to render foliage in the project, due to 
its quick setup time and versatile nature (can be used for trees or grass clumps). However, 
waving blades of grass may be implemented if time permits. 
 

2.4.4 Texturing Methods 

 

2.4.4.1 Texture Splatting 
This technique is a method of using a low res texture map called a splat map which is used 
to alpha blend several other textures in a smooth way. This means that instead of using one 
large texture (eg 512x512), a small splatmap (32x32) and a couple of small textures (64x64) 
repeated over the geometry, which greatly reduces bandwidth consumption, but allows lots 
of extra detail in the scene. 
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Figure 2-16 (Glasser N, 2005) 

As shown above, the greyscale image is the splatmap, which is only 4x4 pixels wide, and 
using it to multiply by the texture, the third image is obtained, of grass with black faded gaps. 
When combined with the dirt under-layer, the final image is obtained, which is of smoothly 
transitioned grass and dirt. 
This technique was originally described by (Bloom C, 2000) and pixel shader principles 
described by (Glasser N, 2005) 
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3 Technical Development 

This section will cover the process of creating the final application, beginning with early 
prototypes and finishing with the completed simulation. 

3.1 Early Prototype 

3.1.1 Voronoi Heightmap and Perlin Noise 

As early research was ongoing, some experimental heightmap generation techniques were 
investigated. One research paper (Olsen J, 2004) suggested that Voronoi diagrams could be 
used to create mountainous sections. In the below prototype, the terrain is split up into a 
number of voronoi areas of differing heights, and then multiplied by a perlin noise factor. The 
multiplication means that high areas appear rough and rocky, whereas lower heights are 
flatter and smoothed, with the noise adding only fine detail. 
The top left shows the normal map of the surface. 

 
Figure 3-1 Screenshot of Prototype 1 

3.1.2 Voronoi Heightmap with Height dependent shading 

This was an evolution of the prototype above, with some HLSL texturing applied. The 
method used was linear interpolation of different texture samplers based on height, so that 
the higher a vertex was drawn, the less of the grass texture was used, and more of the snow 
texture was used. 
Also visible in this screenshot is the base grass texture, which is just a green noise texture, 
similar to Perlin Noise. It was initially planned that the final product might also generate all 
textures procedurally. 
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Figure 3-2 Screenshot of Prototype 2 

3.1.3 Early Fractal Algorithm 

Although the voronoi approach produced decent results, the flats were too boring, and the 
mountains too sudden. In the below prototype, a diamond-square fractal algorithm was 
employed. This allows for much greater detail to be generated, as the algorithm can be 
seeded with a few points, and extrapolate an interesting, ridged mountain shape between 
those points. 

 
Figure 3-3 Screenshot of Prototype 3 

3.1.4 Multiple Blocks 

The final goal of the application is to have an infinitely scrolling world, and to do this, multiple 
blocks must be stitched together. Here, when a block is generated, it checks if any 
neighbouring blocks have been generated; if so, it uses that edge as seeds for the fractal 
algorithm, so that the edges match up. An early implementation of LOD is also shown here, 
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as the central block is at very high res, at 256x256 heightmap resolution, and the neighbour 
blocks are 8x8. Also shown is a graphical bug, where the normal for the lower resolution 
blocks are not filtered correctly, giving this striping effect, where each triangle strip can be 
seen. This was later corrected by averaging values from the high res map, and removing 
erroneous offsets from the code logic. 

 
Figure 3-4 Screenshot of application in development 

3.1.5 Multiple Blocks with Texture Splatting 

Several new features have been added in this version. Firstly, texture splatting has been 
added, allowing 4 separate textures to be displayed on the terrain. In this shot, the sand 
smoothly transitions into grass and then into snow on the highest spots. Also implemented 
here is infinite scrolling, where the offset X and Y values are used to seed the fractal 
generation, and the blocks are dynamically scrolled around the origin, giving the illusion of 
smooth movement. The scale of this scrolling is only limited by the integer precision used to 
store the block X and Y coordinates, which makes the total number of possible blocks 4 
billion squared. Note that the array of ‘A’s in the screen describes which of the blocks are 
active and have been generated fully. 
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Figure 3-5 Screenshot of application in development 

3.1.6 Smoothed Edges and Culling 

Similar to the previous build, but now a culling frustum has been added, which vastly 
improves rendering performance. The dot matrix display on the screenshot shows blue when 
a block is inactive, and red when it’s being displayed. There is a large amount of rendering 
draw calls saved here, which vastly improves the framerate. 

 
Figure 3-6 Screenshot of application in development 

3.1.7 Super Blocks added 

The main problem with the look of the application so far has been that there are no 
overarching features such as mountains or valleys, just homogenous lumpy hills. In order to 
correct this, Super Blocks are added. These are 128x128 sized heightmaps that are also 
fractal generated. These heights are then used to seed 64x64 blocks (scaled down to allow 
the superblock to describe the central ‘diamond step’ of the block. This means that patterns 
that are larger than a single block can be generated, while retaining the fractal nature of the 
generation algorithms. 

 
Figure 3-7 Screenshot of application in development 
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3.1.8 Feature Spots and Sky Box 

In this build, the Super Block code has been modified to produce feature spots. These spots 
are randomly selected in size and position, and could be a bowl shaped lake, flat area for a 
forest or a volcano shape (as pictured). The Super Block now also has the ability to tell 
underlying blocks what texture splat bias they should use. This allows volcanoes to use a 
new rock texture, which is also pictured. 
A sky box has also been added, which makes the terrain feel as though it is part of an actual 
world, rather than floating in a black void. This was achieved with a non-depth tested cube 
that moves with the camera to give the illusion of infinite distance. 

 
Figure 3-8 Screenshot of application in development 

3.1.9 Airplane and View Distance 

A simple model airplane has been added and allows smooth and intuitive navigation of the 
terrain. The Super Block code has also been modified to provide smoother transitions 
between textures when creating volcanoes. 
In addition, when detailed geometry hasn’t been generated yet, the underlying superblock is 
used to show a low detail version of the terrain further away to maintain the illusion of a solid 
surface. 
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Figure 3-9 Screenshot of application in development 

3.1.10  Improved Terrain 

The Super Block generation code has been modified to give much greater peaks and 
troughs, allowing realistic mountains and valleys to be generated. This has instantly 
transformed how interesting the terrain is and improved the visual quality enormously. Also 
of note here is how the volcano has a slightly frosty peak, because it is generated high up 
near the snowy mountains. 

 
Figure 3-10 Screenshot of application in development 

3.1.11 Completed Program 

The final program has been improved with level of detail on TerrainBlockGroups, meaning 
that nearby blocks have more detail (evidenced by the rocks around the volcano). Linear fog 
has been added to disguise the view distance pop-in. 
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Figure 3-11 Completed application 

3.2 System Design 

3.2.1 Classes Overview 

There are several separate classes involved in rendering this system, many of which are 
linked, although not by inheritance. The following class diagram presents a simplified 
overview of the classes in use in the final version of the system. The TerrainDX9 class isn’t 
included as it’s merely the starting framework, and creates an instance of TerrainManager to 
start terrain generation and rendering. In order to maintain diagram simplicity, only a few key 
variables and functions are included for each class. 

 
Figure 3-12 Class Diagram of the system 

TerrainDX9.cpp – This is the main class file which sets up the window and directX 

initialisation. It coordinates the separate parts of the system, such as the airplane and 
skybox classes, and creates an instance of TerrainManager to start generation and display 
of the terrain. 
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TerrainManager.cpp – The heart of the terrain code. This class manages two arrays of 

TerrainBlocks, one for generation and one for display. Upon creation, this class spawns a 
separate thread, which runs in parallel with the draw and update thread. This new thread is 
the generation thread, and is constantly checking for when new blocks need to be 
generated. If so, it gathers data from the SuperBlock and previously generated 
TerrainBlocks to create the next block’s heightmap. 
 
TerrainBlock.cpp – This describes a 32x32 heightmap of terrain data, and stores the 

heightmap, splatmap and lightmap for this block. The splatmap describes the contributions 
of different textures to the final colour of the block. The lightmap is a texture component 
which is applied to the final render to give the terrain block some lighting. This class contains 
the fractal terrain generation algorithm along with functions to calculate the normal map, 
splatmap and lightmap. 
 
SuperBlock.cpp – A larger scale description of what the terrain shape should turn out to be. 

This is like a blueprint for the TerrainBlocks to work from, and describes large scale features 
such as mountains and valleys. It uses its own fractal generation algorithm to make the 
mountain outlines, and stores this in a 128x128 grid of heights. It then randomly assigns 
FeatureSpots to itself and offsets the heightmap to accommodate these new areas of 
interest. 
 
FeatureSpot.cpp – Describes interesting terrain deformation spots, such as a volcano, lake 
or forest. This class can be told to randomly pick a position and size within a heightmap (of a 
SuperBlock) and also modify the texture offsets. The offsets are simple equations, so a lake 
is simply a cone offset, so are not fractal. However, the FeatureSpot is able to label areas of 
the SuperBlock as having a modified fractal roughness for when the TerrainBlocks are 
generated. This means that volcanoes can have rough, rocky peaks, whereas lakebeds 
remain smooth. 
 
DetailObject.cpp – A renderable object which describes supplementary details that are not 

part of the terrain heightmap itself. For example, a lake FeatureSpot makes a bowl shape in 
the terrain, and creates a DetailObject to store the lake water details. This class makes use 
of static variables to only load in the geometry for each type of object once. Each detail 
object just stores details about where an object should be placed, and what sort (e.g. 
positions of trees in a forest about a particular block X and Y). 
 
LandscapeManager.cpp – Manages creation and deletion of SuperBlocks. When the 

camera moves so far that a new SuperBlock is needed, this class creates a new row of 
them, and removes old ones. There are only 9 SuperBlocks in memory, the currently 
displaying one, and the 8 around it. 
 
QuadTree.cpp – A class which manages nodes of a QuadTree, and allows population and 

searching of a large amount of data in an efficient manner. 
 
SkyBox.cpp – Loads the geometry for the skybox, and renders it at an appropriate position. 

 
Airplane.cpp – Loads the geometry for the plane, and renders it at an appropriate position. 

It needs to receive calls to its Update method in order to update the plane’s velocity and 
position. It also takes control commands such as Accelerate and Turn. 
 

3.2.2 Block Generation Flow 

In order to create an individual block, data from several other classes is required. A 
simplified flowchart outlining the process is as follows. 
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Figure 3-13 Flow Diagram outlining block generation 

At the highest level, SuperBlocks need to be created to describe the outline of the terrain 
near the player. The basis of this is a fractal algorithm (Diamond Square), which describes 
the shape of the mountains and valleys. A set of feature spots are created, and then their 
effects are applied to the SuperBlock to offset the fractal geometry by the required amount. 
Within TerrainManager’s generation thread, it is periodically checking for valid blocks to 
generate. If it finds one, it takes the seed points from the superblock, along with any 
parameter offsets, such as increased roughness, and uses these variables to generate the 
heightmap for the block using the fractal diamond square algorithm. It then checks to see if 
creating this block has surrounded any blocks with other generated blocks. If so, the 
lightmap for this central block can be created. The lightmap can only be created once 
neighbours are present because the lightmap needs to take into account heights from 
outside its own heightmap in order to keep the edges of blocks smooth and non-apparent to 
the user. 
After some blocks have created, the other thread checks to see if there are enough to be 
grouped up. A TerrainBlockGroup consists of combined geometry from 16 TerrainBlocks in a 
4x4 square. When rendering, it is the TerrainBlockGroups that are drawn, rather than the 
TerrainBlocks. This is because there can be more than 1000 TerrainBlocks active at any one 
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time, and drawing each with an individual draw call will vastly reduce CPU performance due 
to DirectX overheads (Wloka M, 2003). The TerrainBlockGroups reduce this by an order of 
magnitude, allowing for much better efficiency. 
 

3.2.3 Threading diagram 

The approach taken to multithreading is discussed in greater detail in 3.3.10, but for system 
design purposes, a sequence diagram, showing an outline of the thread’s interactions is 
produced below. 

 
Figure 3-14 Thread behaviour diagram 

The MainThread creates a new GenerationThread to take over geometry creation, while the 
original thread is responsible for drawing and updating the TerrainBlockGroups. This means 
that while the GenerationThread is busy generating blocks with one mutex locked, the 
MainThread can be drawing them to the screen with the other mutex locked. The key part of 
this process is where the MainThread needs to lock both mutexes in order to copy data from 
the generationBlocks into the TerrainBlockGroups. This is done regularly on a non-blocking 
mutex lock, in order to stop the MainThread from stalling. This ensures that rendering 
framerate remains smooth, but at the cost of large pop-in of detail. Both threads loop until 
the program is terminated, upon which the MainThread sends a kill command to the 
GenerationThread, which frees up any resources it has allocated and then terminates. 

3.3 System Implementation 

3.3.1 Texture Splatting 

As described in 2.4.4, Texture Splatting is a technique where a low resolution texture is used 
to control which type of texture is used in the final colour of the object. It is often used in 
terrain rendering to allow smooth transition between grass and dirt or other ground textures. 
In this project’s implementation of texture splatting, it was aimed that 4 textures should be 
used: grass, sand, rock and snow. This way, the desert areas are sandy, the hills are grassy, 
mountain peaks are snowy and volcanoes are rocky. 
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Figure 3-15 The four primary textures used in the project 

 
Each pixel in the splatmap texture consists of 4 values (channels): RGBA, which vary from 0 
to 1. The obvious way to implement texture splatting would be to have each channel 
describe how much each texture contributes to the final image, so R=Rock G=Grass 
B=Sand A=Snow. So for an entirely grass splat, RGBA=0 1 0 0 and for a half grass half 
snow splat RGBA=0 0.5 0 0.5. However, this method ignores the situation of RGBA = 0 0 0 
0, which would end up being black, which isn’t a useful texture.  
Instead, this implementation assumes that grass is the primary texture, and then uses RGB 
for R=Sand G=Rock B=Snow, with the A channel free to use for the lightmap, which will be 
discussed later. This means that each channel takes the current value (which starts off at 
grass) and linearly interpolates it towards the value of that texture sampler. So if RGB=0.5 0 
0 is used, then the shader starts off with a grassy colour, and moves 50% towards sand, 
resulting in a sandy-grass effect. A side effect of this method is that later channels are 
dominant, so RGB= 1 0 1 takes grass as it’s starting point, moves entirely to sand, and then 
entirely to snow, so the final texture is just snow. This can be useful to ensure caps are 
snowy, but care needs to be taken when setting the splatmap values to avoid visual artifacts. 
 

float4 splatColor = tex2D(splatSamp, inStream.Texture); 
 float snowFactor = splatColor.b; 
 float rockFactor = splatColor.g; 
 float sandFactor = splatColor.r; 
  
 float4 texColor = float4(grassTexColor); 
 texColor = lerp(texColor,sandTexColor,(sandFactor)); 
 texColor = lerp(texColor,rockTexColor,(rockFactor)); 
 texColor = lerp(texColor,snowTexColor,(snowFactor)); 
 
As seen above, the code for this effect is very simple and efficient. The outline of the idea 
and linear interpolation concept is taken from (Glasser N, 2005). 
The main problem with this method is its lack of versatility. Each splat can only be coloured 
according to 4 textures, so more complex effects aren’t possible unless another texture is 
used to add another 4 channels to the splatmap palette, or each channel is split in 2, which 
would reduce precision. The alternative method to add variety is to have different texture 
sets for different TerrainBlocks, which means SuperBlocks can use different sets of 4 
textures. An example of this is the desert area. Snow doesn’t have any place in a desert, so 
the snow channel of the splat map would be unused. In desert areas, the desert texture set 
is used, so that the snow channel actually describes a second type of sand texture, allowing 
greater visual fidelity to be achieved. 
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Figure 3-16 Desert area with two distinct sand textures blended together 

 
The caveat here is that if two completely different texture sets are used in blocks beside 
each other, there will be a clear straight line between the two blocks as sand suddenly turns 
into grass, or another combination. To solve this, splatmaps of blocks at the edges of 
superblocks are forced to fade to grass before meeting up with the neighbouring superblock, 
giving a fading grass effect, which is much more appealing. 
 

 
Figure 3-17 Transition from grass to desert over a SuperBlock boundary 

3.3.2 Lightmap 

Using the splatmap above gives each block a unique texture pattern, but lighting would then 
be left to the normal to shade this texture pattern into a surface that appears to have depth 
to it. For most small-scale objects, this method is fine, as polygons are close together, and 
normals provide enough detail for good visual quality. With terrain mapping, the main 
problem is that aggressive geomipmapping is needed. Geomipmapping is where lower detail 
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versions of the terrain are used when they are far away from the camera, and higher detail 
ones used when close to the camera. For example, a 2x2 vertex buffer, giving a very flat 
outline of the TerrainBlock would be used far off in the distance, and a 32x32 vertex buffer 
could be used near to the camera. This speeds up rendering by reducing the amount of 
polygons rendered. The problem with this method is that when the buffers are swapped 
between detail levels, the normals suddenly change, giving a large visual change in lighting, 
as parts of the terrain get brighter and darker to accommodate the new calculations. 
A good solution to this is lightmapping. This technique sends a single channel of texture to 
the shader which describes whether this should be light (1) or dark (0). The terrain splatting 
algorithm already uses RGB, so the lightmap component can occupy the A channel, without 
adding any more data to the structure to be sent across the GPU bus. 
To calculate the lightmap, normal calculation must be performed on the heightmap, the 
simplest way to calculate a normal is as follows: 

 
Figure 3-18 Calculating a normal from three points 

If A,B,C are the points on the heightmap, forming a right-angled triangle, then d is the vector 
from A to C and e is the vector from A to B. To find n, the normal of the triangle, the cross 
product is used: 
 

      
Equation 2 Cross Product example 

 
The problem with this method is that it doesn’t take into account the points nearby, and so 
linear patterns start appearing in the normal. A better approach is to take an average of the 
points around the centre vertex, meaning that more data is taken into account, and the 
resulting normal appears smoother with its neighbours. 

 
Figure 3-19 Diagram of the points used in smoothed normal calculation 
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The above diagram shows the triangulation for a 3x3 set of heights, creating a 2x2 set of 
triangle pairs. In order to calculate a smooth normal for A, the heights of A – G must be 
considered. The equation for calculating a normal for a triangle is the same as above, except 
this is repeated for 6 separate triangles: GAB BAC CAD DAE EAF and GAF. This results in 

6 normals, which are then summed and normalised to result in 1 averaged normal. 
 

  (∑ (   )  (   )
 

   
   
   

) 

Equation 3 Sum of cross products for points A through G 

The result of the lightmap is quite pronounced when we compare the normal-calculated 
version with the lightmapped version. 

 
Figure 3-20 Comparison of normals vs. lightmaps 

 
The normal-lit shot on the left has continuity errors at every block edge, but the important 
aspect is the image quality within the blocks, it looks quite jagged and undetailed. The 
lightmapped version on the right appears to have lots more detail, and also does not pop-in 
like the normal-lit version does. 

3.3.3 Lightmap Continuity 

Having assembled splatmaps and lightmaps for each TerrainBlock, the landscape now has 
texture and shading associated with it. During development, a visual artefact manifested 
whereby the seams between blocks were obvious due to differences in the lightmaps at the 
edges of the blocks. 
The normal averaging algorithm needs the heightmap points to all sides of the vertex normal 
being calculated. This means that when the top left normal of a block is being calculated, the 
algorithm assumes that the surface continues in the direction the next vertex points to. 
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Figure 3-21 Diagram of false assumptions made in lightmap calculation 

This shows a 2D cross section of the border between two TerrainBlocks. When calculating 
the left-most normal of Block B, the algorithm assumes the block to the left of it has its next 
height in the same plane as Block B’s. This leads to a discontinuity in the shading that is 
obvious to the viewer. 
For a block to have its lightmap fully generated, it needs to have data about the blocks 
around it, which might not have been generated yet.  

 
Figure 3-22 Diagram of area of heightmap needed to smoothly generate lightmap for b0 

In order for the central block b0 to have its full lightmap created, it needs all the data 
highlighted in red, so requires the heightmaps for b1 to b8 to have been generated. This will 
be referred to as a Neighbour Set. 

The first approach to solve this problem was to create the lightmap as usual, but perform a 
correcting pass to modify the normals. Whenever a new TerrainBlock was created, it would 
check against nearby blocks to see if it completes a neighbour set. If so, the central block is 
given pointers to the normal maps of the nearby blocks, and the outside ring of normals is 
recalculated by smoothing current normals with the ones from neighbour maps. 
This approach improved the problem, by smoothing the discontinuity between lightmap 
edges. However, this wasn’t quite enough, because smoothing the normals wasn’t 
mathematically identical as calculating it directly from the heightmap. This is because the 
underlying assumption about where the heightmap values were when calculating the 
lightmap the first time round is still present in the final data, although less apparent. 
The second approach was to share neighbour heightmaps instead of normal maps, and feed 
that into the normal map calculation for individual blocks. This method delayed creation of 
the lightmap until the neighbour set was present. If the block was drawn at this point, it would 
be uniformly bright. When a neighbour set is completed, the centre TerrainBlock is sent 
pointers to the heightmaps of its neighbours, and the lightmap is calculated using the 
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neighbour heights as well as the block’s current heightmap. This resulted in much smoother 
edges, as shown below. 
 

 
Figure 3-23 Less apparent edges between blocks 

 
After completing this continuity correction, the edges between blocks were much improved, 
but there was still a problem. The lightmap only takes into account the few normals near any 
given vertex, so although there aren’t any hard edges, the lightmap colour can change quite 
quickly, leading to lines across the terrain where there are harsh valleys created by the 
fractal terrain generation algorithm. The other problem with the current lightmap 
implementation is if a smooth surface, such as a sand dune is created. Because the 
underlying block is flat, the resulting desert looks like this: 
 

 
Figure 3-24 Flat-shaded desert looks square and low-res 

 
While the edges between blocks on the pixel level is smooth, it’s still obvious that these 
surfaces are square and flat. 
The solution that was implemented was to use bilinear filtering on the corner normals of the 
surface, so that the surface is shaded smoothly in both dimensions. A 1D analogue is shown 
below: 
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Figure 3-25 Difference between flat surface normals and smoothed ones 

On the left is the unfiltered normals, where the normals between b1 and the other blocks are 
smoothed, but the rest of the surface is flat. On the right is the linear filtered version (extends 
to bilinear in the 2D case) where the normals curve out slightly, giving a smooth transition 
between the two three blocks. This makes the terrain look a lot smoother, as shown below: 
 

 
Figure 3-26 Desert scene with smoothing applied 

 
The caveat here is that if bilinear filtering is used exclusively, it only takes into account the 
edge 4 normals, which means that the block is very smooth, but has no detail. In the current 
implementation, a blending factor is used, which combines the detail normals with the 
smooth interpolated normals. This means that for an entirely smooth area, like the desert, a 
factor of 0 is used, meaning the normals are entirely smoothed. For the hills and mountains, 
a factor of 0.5 can be used, which has a smoothing effect, but keeps high frequency detail. 
With this implementation, the lines between TerrainBlocks are much less obvious, and helps 
provide the illusion that the landscape is a continuous whole. 
 

3.3.4 Fractal Terrain Generation with Diamond Square 

As outlined in 2.3.1.4 and 2.4.1, the diamond square fractal generation algorithm is a 
process by which heightmap values are iteratively displaced from the outside in, using a 
diamond square pattern. When generating a heightmap for a TerrainBlock, a set of seed 
points are sent to the GenerateHeightmap function. If no blocks have been generated yet, 
then only the four corner points are set at a neutral height. If one or more of the sides of the 
TerrainBlock has a neighbouring block that’s already generated, that side acts as the seeds 
for the new terrain block, so that each block matches up exactly with its neighbours. 
The first step in the algorithm is to take the 4 corner values, and average them to get the 
centre value. 
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Figure 3-27 Diamond Step (Polack T, 2002) 

Taking ABCD as the seed values, E is produced, this is the diamond step, as it averages the 
diagonals. A small random offset is added to E to add detail to the terrain, as iterations 
continue, the range of random numbers is reduced, which means that the initial passes of 
the algorithm give the overall shape of the terrain, while the later passes give the detail. 

 
Figure 3-28 Square Step (Polack T, 2002) 

The square step is now performed, where the midpoints are calculated between ABCD, and 
form the points FGHI. These points now complete the subdivision of this square into 4 

smaller squares. The algorithm is then performed again on each of these squares again and 
again until the desired precision is achieved. 
In this implementation of the algorithm, roughness and smoothing factors are used. When 
offsetting the heightmap points, the maximum possible offset would be 1 or -1, clipping the 
height to the top or bottom of the variable set. A good roughness to start with would be 0.4, 
which gives a well sized peak or trough in the middle of the TerrainBlock. If this roughness 
was kept constant throughout the algorithm, the resulting terrain would be very jagged and 
look very unnatural. Every iteration, the roughness factor is multiplied by a smoothing factor, 
which makes the roughness decrease over the iterations. A smoothing factor of 1 means no 
decrease in roughness and very jagged terrain, a smoothing factor of 0 means that 
everything but the first pass is infinitely smooth, and would end up with a pyramid shape, as 
all subsequent points just interpolate the initial 5 values. A smoothing factor of 0.5 would be 
a good start, meaning that the roughness halves each iteration, which keeps the overall 
shape of the terrain interesting, and keeps some detail in the lower frequency noise. 
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3.3.5 Infinite Scrolling 

One of the challenges faced early on in the project was how to make the terrain scroll 
infinitely (or near infinite). It had already been decided that the terrain would be divided up 
into blocks to help with this, as it meant chunks of terrain could be swapped in and out when 
needed. The easiest way to depict a scrolling terrain would be to randomly generate new 
blocks when needed, and add them to the end of the terrain in the direction the camera is 
travelling. This would give the illusion of an infinite terrain, but if it was simply randomly 
generated, then when the camera returned to a particular point on the terrain, it would have 
been generated differently, breaking the illusion, as the world would not be consistent. To 
solve this problem, each block is given an X and Y blockID, which are combined to form a 
seed for the random generator, which means terrain is the same when returning to the same 
physical spot. This unfortunately means that it isn’t entirely infinite, because the integer 
format used only goes between -2,147,483,648 and 2,147,483,647 which totals about 4 
billion (thousand million) blocks in each dimension, which is 16 quintillion (trillion) blocks in 
total. This seems close enough to infinite to give the appropriate illusion. 
The second problem is one of precision. The camera is positioned using floating point 
values, which can have high precision or great range. This means that if a floating point 
becomes very large, it loses local precision. This would mean that for extreme positions in 
the world, the camera might move a bit erratically, which would break the illusion. In order to 
solve this problem, instead of moving the camera, the world (TerrainBlocks) are moved 
underneath the camera, and new blocks are swapped into new rows when the camera 
needs to appear moving in one direction. 
This needs two functions, one to move all the TerrainBlocks by a small amount, to give 
smooth scrolling, and another to swap blocks in and out as required, to keep them central to 
the origin. 
The MoveTerrain function takes two float values and moves all blocks by a small amount, 
and then tests to see if the blocks have been moved further than a block length. In this case, 
the physical block size is 256, so if the terrain moves 256 in one direction, a new row needs 
to be swapped in. 
 

if(terrainOffsetX > 256){ 
  terrainOffsetX -= 256; 
  MoveBlocks(-1,0); 
 } 
 if(terrainOffsetX < 0){ 
  terrainOffsetX += 256; 
  MoveBlocks(1,0); 
 } 

 
The MoveBlocks function takes two integers and moves the currentBlockX and Y position by 
these values. Then the Update function will remove the unneeded TerrainBlocks, and swap 
in the new blocks when they’ve been generated. 
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Figure 3-29 Diagram of new block swapping in when camera moves 

In this example, b5 is the central block, with b4 and b6 also displayed. The MoveTerrain 
function moves all of these blocks to the right simultaneously until a new row of blocks are 
needed. At this point, b6 is no longer needed, and so will be swapped out. B3 however, is 
needed, so will be swapped in on the next update. This continues almost infinitely, giving the 
illusion of a complete world that the camera is moving through. 
 

3.3.6 Super Blocks 

Towards the final quarter of development time, it was decided that the landscape as a whole 
looked too boring. Although the individual TerrainBlocks were fractally generated, their seed 
points were still on a flat plane. This meant that the landscape was just homogenous looking 
lumps, as shown below. 

 
Figure 3-30 Homogenous looking terrain 

In order to solve this problem, SuperBlocks were invented. The concept behind these would 
be that a super block would contain the seed data points for a 64x64 area of TerrainBlocks. 
This would allow a SuperBlock to describe the overall shape of a portion of terrain, such as 
the mountains and valleys, and the generation algorithm would seed each TerrainBlock with 
these points, and the TerrainBlock would fill out the details. 
To fulfil the fractal aim of the project, the shape of the SuperBlock is determined by a 
Diamond Square algorithm, just like in the TerrainBlocks. When creating a new SuperBlock, 
this fractal algorithm is run, generating a 129x129 set of points, which are mapped to 64x64 
TerrainBlocks. Each mapping is done using a ‘BlockDefinition’ which is a struct the 
SuperBlock uses to store seeding data about a TerrainBlock before it is generated. Each 
BlockDefinition stores 9 seed heights, for the Top, Middle and Bottom rows of Left, Centre 
and Right columns. This means that 129 points are used per dimension for a 64 block map. 
In addition to the seed points, the BlockDefinition stores the roughness, smoothing factor 
and the normal blending factor. This means that the SuperBlock can determine how rough or 
smooth the TerrainBlock geometry will be, along with how smoothed its lightmap would be. 
This allows the SuperBlock to have small areas of rocky outcrops, with the rest of the 
SuperBlock being smoother. This is useful for making the tops of volcanoes ridged, while 
keeping the rolling hills smooth. 
In order to keep terrain outline data in memory, SuperBlocks scroll with the terrain as the 
camera moves, so 9 SuperBlocks are kept in memory, the one the camera is currently over, 
and the 8 around it (N,NE,E,SE,S,SW,W,NW as compass bearings). When the terrain 
moves over a SuperBlock boundary, a new row of SuperBlocks are generated, and replaces 
the old row, ensuring that the generation thread always has a SuperBlock to get 
BlockDefinitions from when creating TerrainBlock heightmaps. 
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3.3.7 Feature Spots 

After making SuperBlocks to add large scale sweeping detail to the landscape, it was 
decided that some more variety could be used to break up the scene and keep it from 
looking too homogenous. To this end, the FeatureSpot class was created. A feature spot is 
an NxN grid of offset values which deform the terrain of a SuperBlock into a more interesting 
shape. For example, a 10x10 grid could be assigned to a lakebed, where the [5,5] array 
value is largely negative, and the value tends to 0 as the array co-ordinates tend to the edge. 
This is effectively a heightmap offset map, which is used to make the SuperBlock generated 
terrain move up or down to varying degrees to make lakebeds, volcanoes and flat areas for 
forests. 

 
Figure 3-31 Combination of heightmap and offsetmap 

FeatureSpots only affect the shape of the SuperBlock, and can’t make new geometry. A new 
class is needed for the geometry detail that is often associated with FeatureSpots. For 
example, a lake FeatureSpot needs water geometry in it, otherwise it’s just a hole. A forest 
would just be a flat space without the trees. 
In order to accommodate this, the DetailObject class was created. This class is associated 
with the TerrainManager, and whenever the update method is called, it checks the current 
SuperBlock’s array of FeatureSpots to see if detail needs to be added. If a new piece of 
detail has come into view, then its parameters are added to the detail object list, and is 
rendered the next time Render is called. A lot of the geometry used will just be duplicates, 
such as all lakes will be circular. In order to save on memory, the objects are loaded in as 
static pointers, associated with the DetailObject class, and then every instance of 
DetailObject that is rendered using the static geometry on the GPU. This is particularly 
important for trees, of which there can be hundreds on screen at any one time. 
 

3.3.8 Trees and Geometry Instancing 

One of the FeatureSpots mentioned previously was a forest – a flattened out area on which 
trees are rendered. The scale of these trees will have to be quite small to fit in with the rest 
of the world, so there will have to be large number of trees in a forest (about 80 is used). 
Drawing each of these trees individually would be a waste of CPU time, as each draw call 
uses CPU time, and each tree requires 3 passes (1 for the trunk texture, and 2 for the 
transparent leaf textures). This would result in 240 passes for a single forest, which would be 
a lot of work on the CPU, so the trees need to be batched together. 
One possible solution would be to copy the vertex data for each tree into a large vertex 
buffer, which contains all 80 trees in different positions, allowing the forest to be drawn as 
one big object. This is known as static batching, and would cut down on draw calls, but be 
very wasteful of GPU memory, as it’s storing 80 times the vertex data that is needed. 
Thankfully, there is a method introduced in DirectX 9.0 called the Geometry Instancing API, 
which is designed for this very purpose. The API changes the way a shader receives 
information by sending two vertex buffers. The first is a normal vertex buffer containing the 
geometry of the object to be rendered. The second contains data about every instance, and 
the data represents variables such as position and colour. 



Real Time Fractal Landscape Flyover  

- 38 - 

 
Figure 3-32 Vertex Buffer Layout for the Instancing API (Carucci F, 2005) 

 
Using this system, 80 trees can be drawn in just 3 draw calls, one for each texture. However, 
an improvement can be made. By using an extra variable in the vertex buffer it can identify 
what texture should be used. In order to do this, the vertex buffer for the object is carefully 
ordered so that all vertexes using the same texture are grouped together, and the colours of 
the vertex are set to red, green or blue to tell the shader which texture to use. This is then 
fed into the instancing API as usual, and one pass is made to draw all 80 trees fully. 
 

 
Figure 3-33 Trees rendered in the final program 

3.3.9 TerrainBlockGroups and Batching 

Interactive graphically intensive applications, such as this one, are often both GPU and CPU 
intensive. In the case of this project, the GPU needs to be capable of rendering large areas 
of terrain in a quick and efficient manner, complete with shaders and extra detail spots. The 
CPU on the other hand is busy with generating the geometry to be sent to the GPU, along 
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with the splatmaps and lightmaps, as well as coordinating threads and organising the 
TerrainBlock arrays. This means that the CPU needs to be freed up as much as possible to 
make the generation run quickly. With DirectX, whenever a Draw Call is made, it uses a 
chunk of processor time to coordinate it. Usually, the CPU can draw tens of thousands of 
these per second, but if framerate is considered, this gives only a few hundred to a thousand 
per frame if 60FPS is desired. In order to keep the draw calls down, objects can be grouped 
up into batches, and drawn as one object. In order to do this, TerrainBlockGroups are used. 
These objects take over from the TerrainBlocks when creating geometry, and instead of 
creating one triangle strip per TerrainBlock, it can create one triangle strip per 4x4 group of 
blocks, meaning that the number of draw calls is reduced by 16. The question is quickly 
raised: Why 4x4? Why not draw all the blocks as one call? 
Firstly, if all the blocks were grouped together, whenever a new row of blocks were added, 
the TerrainBlockGroup would have to be updated, and regularly updating a large vertex 
buffer is slow, and it would also take the processor time to re-strip the triangles. 
The other issue is one of culling. Drawing fewer polygons on screen makes rendering faster, 
so ideally, any polygon offscreen shouldn’t be drawn. To do this, a culling frustum is used to 
determine what the camera is looking at. Initially, a custom implementation was chosen, 
based on code from (Fernandes A, 2010) but then was swapped out for the DirectX function 
D3DXPlaneDotCoord, which takes a plane and a position vector, and determines which side 
of the plane it is on. The DirectX alternative was used because the software implementation 
initially used wasn’t 100% correct, so resulted in some odd results due to a code problem 
that wasn’t identified. 

 
Figure 3-34 Standard camera frustum (Luna F, 2006) 

 
As diagrammed above, the camera frustum consists of 6 planes, the near and far planes, as 
well as left, right, top and bottom frames. If a point is on the inside of all of these planes, then 
it is within the frustum and will be drawn onscreen, otherwise, it can be culled. 



Real Time Fractal Landscape Flyover  

- 40 - 

         
Figure 3-35 Difference between number of TerrainBlockGroups used for culling 

 
On the left is a cull frustum on a lot of small TerrainBlockGroups, the green represents 
groups to be drawn, and the red represents those to be culled. The green fits well to the 
frustum, so there are not many polygons drawn that don’t need to be. Converse ly, in the 
right image, where a much smaller number of groups are used, there is a lot of wasted 
polygons, as the green often goes far past the culling frustum. If this was the only 
performance metric, then lots of TerrainBlockGroups would be good, and very few polygons 
would be wasted, but this would mean lots of draw calls. For this reason, a compromise 
between reducing draw calls and increasing culling efficiency is needed. Using 4x4 blocks 
turns out to be a good compromise, and ends up rendering about 70 draw calls, resulting in 
90FPS average on test system A (see 6.1.1). 
As mentioned previously, TerrainBlockGroups turn heightmap data into triangle strips. The 
heightmap data is provided in a grid array format, so the intuitive solution would be to use 
triangle lists, rather than strips. Triangle lists are where every triangle is formed by 3 
vertexes, and they are listed 3 by 3 by 3 as a list of triangles. This means that some vertexes 
are repeated for grids like heightmaps. Triangle strips, on the other hand, start off with 3 
vertexes for the first triangle, and every vertex after it forms a triangle with the previous 
three. 

 
Figure 3-36 Triangle Strip Layout (Walsh P, 2008) 

The image above consists of 4 triangles, which are described using 6 points in a triangle 
strip. In a triangle list it would take 12 points to describe. This saves a lot of GPU memory, 
and results in faster rendering. This method works very well for triangulating the first row of a 
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heightmap, but at the end of a row, it needs to reset to the left side and look at the next row, 
just like reading the text on a page of the book, there is a jump from the end of one line onto 
the next. If the triangle strip is just continued, a long thin triangle is drawn between every 
row, and ruins the visual effect. Splitting up the triangle strips for every row would end up in 
many more draw calls, slowing down the program. The most elegant solution is to use 
degenerate triangles. A degenerate triangle is a triangle with no area, which can be made by 
having a triangle with two points being identical. If you were to imagine drawing a triangle 
from points 0, 1 and 0 again on the image above, it would result in a line which has no area, 
so would not be drawn by the rasteriser.  

 
Figure 3-37 Use of degenerate triangles to link separate strips (Fletcher D and Parberry I, 2002) 

As demonstrated above, the degenerate triangle results in a line between the two sets of 
strips, unifying them into a single triangle strip without artefacts. In order to do this, 4 
degenerate triangles are used, so 4 more points are added in between the two strips. The 
last index of the first strip is repeated, followed by repeating the first index of the second strip 
twice, then the second index. The triangle strip can then continue as normal. (Reilly M, 2002) 

3.3.10 Multithreading 

One of the most challenging problems faced in this project was efficiently threading the 
application to generate geometry in the background, while rendering and updating in the 
foreground. The solution to this is to use multithreading, and have the main thread render 
and update the TerrainBlocks which are ready to be drawn, and have a worker thread 
generate geometry and lightmaps for the blocks that will be needed soon. This is an elegant 
solution, and makes use of the multicore processors of today. The caveat is that 
multithreading is very complex to orchestrate efficiently. If care isn’t taken, then the 
application spends more time waiting on the other thread than would have been saved by 
having everything running in the same thread. The optimisation and experimentation for the 
threading system continued throughout the programming of this project. 
Mutexes (Mutual Exclusion objects) are a system by which a mutex is flagged as acquired 
by one or other thread, and the thread which doesn’t have the mutex must wait until the 
other thread is finished with it before continuing. The mutex acquisition operation is atomic 
thread safe, and so is used to flag pieces of code which act on data shared between the two 
threads. Some form of thread safety is needed because threads can run be running in 
parallel, so there is no guarantee that a piece of code will run or complete before another 
piece of code in a different thread. This is fine if the threads don’t interact, but if there is data 
that needs to be passed between threads (such as TerrainBlock data) then thread safety 
needs to be used, otherwise undefined behaviour occurs. 
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The basic setup of the threads was to have two threads: UpdateDraw and 
GenerationThread. UpdateDraw used terrainBlockList to draw all the currently active blocks 
on screen and update them. GenerationThread used generationBlockList to store blocks that 
were in the process of being generated, and weren’t on screen yet. The idea was that 
GenerationThread would be busy in the background, churning out geometry into the 
generationBlockList, and the UpdateDraw thread would swap in the generationBlocks into 
the TerrainBlocks and draw those. 
The aim of using mutexes was to reduce the amount of time spent waiting for the other 
thread, so logically, the first solution was to have a mutex for every single TerrainBlock. This 
meant that if 100 blocks were to be drawn on screen, and another 40 were in the generation 
list, then 140 mutexes were to be used. This would mean that the only time a mutex would 
be needed simultaneously was when the same block needed to be drawn as was being 
generated. This turned out to be horribly inefficient, because mutexes are not very quick. 
The act of locking and unlocking a mutex can take up to 9000 processor cycles (Duffy J, 
2006) and so having over 100 of these meant that and semblance of good performance was 
lost. 
The second approach was to use 2 mutexes, one for each of the lists. This meant that while 
the GenerationThread was generating a generationBlock, the draw thread would be drawing 
the blocks in terrainBlockList, and no wait conditions would occur. The only place where both 
mutexes needed to be locked was where the generationBlocks were swapped into the 
TerrainBlockList for rendering. This was a marked improvement on the previous solution, but 
there was a problem. An extra lock was needed in the GenerationThread because when 
generating a new block, it needs to know about its neighbours to smooth the lightmaps and 
seed the geometry creation, as described in 3.3.3. This meant that only part of the 
GenerationThread was operating on the generationBlocks alone, it needed access to both 
mutexes periodically to sort out neighbouring blocks. While the performance was decent, it 
resulted in an uneven framerate. When the GenerationThread was idle, the framerate was 
very high, but when the camera moved into new terrain, and more blocks needed to be 
generated, the framerate took a huge hit, as it couldn’t draw and generate simultaneously. 
The final solution was to maintain a copy of all blocks in the generationBlocks list. This 
meant that if the grid of blocks on screen was 10x10, then the generationBlocksList would be 
12x12, and would contain a copy of all the blocks on screen, and those being generated. 
This way, the GenerationThread never needs to lock the terrainBlocksList mutex, and 
drawing can go on simultaneously with generation. The consequence of this is that a lot of 
the TerrainBlocks are stored twice, wasting some RAM, but this is a reasonable price to pay 
for efficiency. The key part to making it work smoothly is the Update method. This is the only 
place where both mutexes need to be locked, and it is where generationBlocks are copied 
across to the terrainBlockList. If this blocked too often, then the framerate would take a hit. In 
order to make this fast, the Update method doesn’t block, and merely waits for 1 millisecond 
to see if both mutexes are free. If the GenerationThread is busy with a generationBlock, then 
the Update method skips the block swap operation and goes back to rendering another 
frame. This results in a very smooth framerate, but at the expense of blocks that visually pop 
on screen in large chunks. This compromise was acceptable because realtime smooth 
framerate was deemed more important than pop-in. 
A tool called Memory Validator (Software Verification Limited, 2010) was used during the 
multithreading testing to ensure that no memory leaks were present. This software would 
check for not only standard memory leaks, but for unsafe thread accesses, which made it a 
useful tool in ensuring that the code was thread safe. 
 

3.3.11 Linear Fog 

In order to disguise terrain geometry popping in at the horizon, a common approach is to use 
fog. In real life cases, fog is a phenomena caused by small particles or droplets in the air 
which scatter light and cause far away objects to be obscured by the fog. In rendering 
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processes, this can be simulated by tending far away objects to a particular colour. This is 
usually done by looking at the depth of a rendered pixel, and applying a colour offset to it 
depending on how far away it is. 

 
Figure 3-38 Example of linear fog in a sample application from ShaderX2 (Nuebel M, 2003) 

In the case of linear fog, the fog is applied according to the following equation: 
 

  
              

                 
 

 
Equation 4 Linear fog equation from ShaderX2 (Nuebel M, 2003) 

This allows the start and end of the fog to be determined, which is useful in this case, as the 
aim is just to obscure the distance where the terrainBlocks will pop in without making the rest 
of the terrain difficult to see. The fog was implemented in the system using the DirectX API 
and its renderstate functions: 
 

g_pDevice->SetRenderState(D3DRS_FOGTABLEMODE, Mode); 

g_pDevice->SetRenderState(D3DRS_FOGSTART, *(DWORD *)(&Start)); 

g_pDevice->SetRenderState(D3DRS_FOGEND,   *(DWORD *)(&End)); 

 

As provided by Microsoft on the Pixel Fog page of MSDN (MSDN, 2011). 
In action, the fog effect adds a great deal of realism to the scene. 

 
Figure 3-39 Final application without and with fog effect 
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3.3.12 Water Rendering 

Another aesthetic addition which was added toward the end of development was water. The 
water in this simulation is limited to circular lakes which are placed at FeatureSpots, the 
detail of the water is implemented through a shader. More complicated solutions, such as 
form fitting lakes which fill in parts of the terrain geometry, or river simulation and water 
sources were not attempted due to time constraints and that they were outside the main 
focus of the simulation. One performance benefit to having all the lakes circular is that a 
single vertex buffer can be used for all lakes, saving video memory. 
The shader used to simulate the water surface is a reflective shader based off a cube map 
texture of the sky box. A procedural offset to the normal is applied using trigonometry 
functions to create a ripple effect, and a specular component is added to give the water a 
brighter appearance. 

 
Figure 3-40 Water effects in full scene render 

The techniques used to implement the water shader were inspired heavily by Ben 
Humphrey’s implementation (Humphrey B, 2005) 
 

3.3.13 Airplane Simulation 

The airplane simulation aspect of the project did not require physical accuracy, so a simple 
model of acceleration and velocity were used to simulate the movement of the plane. The 
user only has three controls: Accelerate, Turn Left, Turn Right. The height of the plane is 
controlled automatically to keep it above the terrain surface. The airplane class hold 
variables for the plane’s position, velocity and acceleration. The acceleration is applied to the 
position using the following formula, taken from (Li Q, 2011): 

 ( )      ∫  ( )  
 

 

 

 ( )          
 

 
    

Equation 5 Constant Acceleration formula (Li Q, 2011) 

And the velocity is also updated according to: 
 

 ( )         
Equation 6 Velocity formula (Li Q, 2011) 
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This allows the airplane’s forward velocity to be controlled realistically. The turn controls are 
implemented in a similar way, where a ‘Turn Left’ command accelerates the plane’s rotation 
in that direction, and when no command is applied, the acceleration is quickly dampened to 
zero. This makes the plane feel as though it is ‘banking’ into turns as a real plane would, and 
makes the turns feel less rigid, without making the plane feel out of control. 
The height of the plane is achieved by finding the SuperBlock that the plane is currently 
over, and calculating the height that the underlying terrain is at. This height (plus a small 
amount to keep the plane out of the ground) is classified as the minimum height the plane 
can be at. If the plane’s current height is less than the minimum height, then the plane is set 
to the minimum height, to ensure no intersection with the terrain occurs. If  the plane is above 
the minimum height however, the plane’s height tends towards that height over a couple of 
seconds, which means that the plane floats down off of high mountains, giving a feeling of 
smooth flight, rather than being stuck rigidly to the terrain. 
 

3.4 System Testing 
During the development of the application, most testing was done as required to ensure a 
new feature was functioning correctly. Whenever a bug was found, a note of it was made, 
and it would be fixed at a later date. Bugs of negligible importance would be further down the 
list and would be fixed later (or not at all if time constraints were a problem). Some examples 
of bugs that were found during development were: 

 Black lightmap edges, which were caused my incorrect ordering of generation, which 
meant that a lightmap would be generated without all its neighbours. 

 Resizing or minimising the window results in a crash. Some DirectX resources 
needed to be re-instantiated in this case. 

 TerrainBlocks didn’t match up. Seeding from neighbours had been incorrectly 
implemented, and more checking needed to be done to ensure that blocks lined up. 

 TerrainBlockGroups had gaps between different LODs. Different levels of detail 
meant that gaps appeared on boundaries. This was fixed by clipping higher res maps 
to lower res boundaries. The groups were large enough that this didn’t affect visual 
quality much. 

 Lake detail jutted out of mountains or were placed under the terrain. This was fixed 
by getting the heights directly from the SuperBlock, rather than estimating it with an 
equation. 

 Crashes on non-dev machine. Inter thread memory leaks were occurring, meaning 
undefined behaviour, which was accentuated on other machines. This was fixed by 
properly employing mutexes. 

The second form of testing was to test the software on different hardware platforms, to 
ensure compatibility and test performance. The specifications of the test systems used are 
available in 6.1. 
 
Hardware Used Idle FPS Generating FPS 

Test System A 105 90 

Test System B  110 75 

   

 

4 Critical Evaluation 

4.1 Project Achievements 
Overall, the project has gone very well, and everything got finished on time, but some 
elements of polish were left out. The Time Plan was kept to quite closely, but needed some 
tweaking at the interim stage. Some of the tasks were started slightly earlier than expected 
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and lasted longer than expected. A large amount of time was put in on the part of the 
developer to ensure that the project was feature complete by the Easter break period. 
Although very time consuming, it has resulted in a very impressive project that meets all of 
the core goals set out initially. 
 
Core Aims 

 Render a 3D terrain 
o Must be realtime (above 25FPS) –  

Complete, the final application runs at well over 60FPS consistently on test 
system A (see 6.1.1) 

o Must scroll as to appear larger than what is currently onscreen – Complete, 

the world is scrolled under the camera, and new blocks are generated to 
ensure the illusion of a never ending landscape 

o Base generation of terrain must incorporate a fractal algorithm – Complete, 

this is achieved on two levels. The SuperBlock uses a fractal algorithm to 
generate the overall shape of the terrain, and the TerrainBlocks use a fractal 
algorithm to generate the detail in the lightmap and geometry. 

o Must be textured, ideally with some form of shader –  
Complete, texture splatting is employed in a shader to produce smoothly 
textured terrain. 

 Control a plane flying over the landscapes – Complete, the user has basic control 

over a plane which flies above the landscape as it scrolls underneath it. 
 

Secondary Aims: 

 Additional Terrain Detail 
o Include Trees on the terrain –  

Complete, some FeatureSpots are forests, with many trees placed on the 
terrain. 

o Include Lakes and/or Rivers on the terrain –  
Complete, some FeatureSpots are lakes, which are simple, circular lakes. No 
rivers were incorporated. 

 Make the landscape scroll infinitely (if possible) –  
Complete, the landscape scrolls almost infinitely, and certainly gives the illusion of 

an infinite landscape, as content is generated as the plane flies in a new direction. 

 Have the application scale graphics settings based on hardware available – 
Incomplete, the software doesn’t scale automatically to the hardware because there 

aren’t graphical scale options incorporated into the application. 
 
The only goal that wasn’t met was graphics scaling to hardware. This wasn’t achieved 
because of restricted time towards the end of the project, and that underlying code structure 
only allows for small amounts of graphical scaling. 
The other, related shortcoming of the application is the lack of terrain size scaling. The 
prototypes started off with a few large TerrainBlocks, and then they grew smaller and more 
numerous until performance was being impacted, so they were grouped up into bigger 
blocks again. If a system had been designed where TerrainBlocks could vary in size, this 
issue could have been resolved in a better manner. 
Also, a lot of time was spent optimising the generation algorithms, and in the end, the logic 
was consolidated down by about half. At one point, when a block was generated, it 
attempted to be swapped into the drawing list, if not, it went on a list to be attempted later, 
and then during the update method, swapped in. This was a waste of code, as the swap in 
code could be used just once in Update for a simpler and more effective method. 
 
The big achievements of this project are the infinite scrolling, something that has been seen 
rarely in high graphical intensity applications. The smoothness of the threading algorithm is 
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also a particularly impressive achievement for a student project, although the speed of 
terrain generation could certainly be improved. The generation of blocks is a little slow on 
today’s systems, and while there is room for optimisation, it is partly due to the complex 
nature of calculating new content in real time which is very demanding on today’s machines. 
In a few years’ time, this approach will be more viable, particularly when processors become 
more and more parallel, and something needs to be found for each of the processors to do. 
Another impressive point is the graphical fidelity of the project, the lightmaps provide a very 
smooth and detailed surface, and the texture splatting is very smooth, resulting in an 
aesthetically pleasing scene. 

4.2 Further Development 
There are a number of improvements that could be made to the project to improve it further. 

 Improved terrain generation speed -  
The biggest visual problem is the pop-in that detailed lightmaps make. If the 
efficiency of the Generation algorithms were improved, this could give a more 
appealing result, this could be done by using lower resolution lightmaps, improving 
search algorithms, or optimising the quadtree currently in place. 

 Fix tree transparency - 
Trees are not drawn in back to front order, so at certain angles, some transparency 
artefacts are present. These were not fixed in time due to trees being a non-core aim, 
and would have been left until other bugs had been fixed. 

 Scalable TerrainBlock size - 
Refactoring some of the early code to allow terrain blocks to sample from the 
SuperBlock in a non-hardcoded way would allow better performance optimisation. 

 Graphical Scaling - 
Allowing the lightmap quality to change and adding in multiple versions of shaders 
would allow the graphics to scale with the computer hardware. 

 Greater variety of terrain types - 
If more texture sets and fractal parameters had been defined, then a greater variety 
of terrain could be achieved. 

 Greater variety of FeatureSpots - 
The FeatureSpot class is quite versatile, and it would be good to add some more 
variety to them, including types such as Oasis, Rock Outcrop, Village/Houses or 
maybe fields/parks. 

 Lockless programming – 
In order to speed up the multithreading aspect of the program, a possible solution 
would be lockless programming, which is a method of programming which allows 
thread to interact without locking mutexes or entering into critical sections. This was 
investigated briefly, but it was determined that it would require an overhaul of the 
application that would cost too much time. (Dawson B, 2003) 

4.3 Personal Reflection 
The author thinks that plenty of personal learning progress has been made as a result of this 
project. Learning about HLSL shaders and their integration into DirectX has been achieved, 
and good knowledge of the fundamental capabilities of shaders have been realised. 
Multithreading is another area that was little known about before undertaking the project, and 
while not mastered, a good deal of the basic efficiency dangers are now understood. The 
author also learnt a lot about DirectX bottlenecks and efficiency considerations such as draw 
calls and triangle strips. There weren’t any huge problems managing a project of this size, 
but the code isn’t as reusable as it could be, and that is another learning aspect. More in-
depth knowledge about professional white-paper authoring and Harvard referencing has also 
been attained. 
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6 Appendices  

6.1 Appendix of Test System Specifications 

6.1.1 Test System A 

Processor: Intel Core-i5 2.40GHz 
RAM: 4GB 
Video: ATI Mobility Radeon HD 5650 1GB 
Operating System: Windows 7 
Resolution: 1920x1080 
 

6.1.2 Test System B 

Processor: AMD Turion X2 2.2Ghz 
RAM: 4GB 
Video: ATI Mobility Radeon HD 4530 512MB 
Operating System: Windows Vista 
Resolution: 1280x1024 
 

6.2 User Guide 

6.2.1 Installation 

The main executable ‘TerrainDX9.exe’ is available in the TerrainDX9 folder, however there 
are three important dependencies that are required before it will run. 
 
DirectX 9.0c compliant graphics card 
Directx_feb2010_redist.exe 
Vc_redist.exe 
 
This application has failed to start because MSVCR100.dll was not found. Re-
installing the application may fix this problem. 
This problem refers to a missing dll required to run MSVisualStudio2010 applications. 
Running vc_redist.exe found on the CD will fix this problem. 
 
Unable to load d3dx9_xxx.dll 
This problem refers to a missing dll required to run DirectX applications made with the Feb 
2010 version of the library. 
Running Directx_feb2010_redist.exe found on the CD will fix this problem. 
 

6.2.2 Operation 

Using the application is very simple. Upon running, the landscape will display with an 
airplane in the centre of view. The user can control movement through using the W key to 
accelerate and the A and D keys to turn. The procedurally generated world can be explored 
like this and the plane will stay above the terrain currently flying over. The R and F keys 
control the height of the camera. P toggles between wireframe and solid view. U toggles a 
visualisation of the culling process (but slows down rendering slightly). 
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6.2.3 Shutdown 

To shut down the application, click the close button at the top right of the window. 
 

6.3 Credits and Sources 

6.3.1 Software used 

Microsoft Visual Studio 2010 
Microsoft DirectX SDK 
Windows 7, Vista 
Microsoft Word 2010 
Paint Shop Pro 8 
Genetica Viewer 
Mozilla Firefox 4 
 

6.3.2 Sources of Textures and Models 

Mayang.com Texture Repository 
Genetica Texture Creator and Viewer 
Turbosquid.com 
Microsoft DirectX Samples 
 

6.3.3 Special Thanks 

University of Hull 
Darren McKie 
Qingde Li 
Friends and Family 
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6.4.1 Initial 
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